If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-80x-15=0
a = 6; b = -80; c = -15;
Δ = b2-4ac
Δ = -802-4·6·(-15)
Δ = 6760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6760}=\sqrt{676*10}=\sqrt{676}*\sqrt{10}=26\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-26\sqrt{10}}{2*6}=\frac{80-26\sqrt{10}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+26\sqrt{10}}{2*6}=\frac{80+26\sqrt{10}}{12} $
| 49y^2-5=33 | | 3.2-1.6b=9.12 | | 4x-2+70=12x+4 | | 181=10p-9 | | X=5/(4y-7) | | 8x+3=8x² | | 10.42=−2.6z+0.8 | | 1.3x+12=2x-4 | | 6x-2+10=46 | | 9y^2-7=28 | | 20y22+7y-6=0 | | 72=06j | | 3x-17=7-2x | | C(11,r)=165 | | 11t-8=52 | | 3+2+2x10=N | | a/0.75=26 | | 2x+1+x-1=180° | | x+62+x+52+90=180 | | 9x=16+(-x) | | 30x-75=4 | | 3(x-2)=2x+14-x | | 6/14=7/(x–3) | | 3x+2=2x+14-x | | -20=z/10-22 | | 35x-10=8 | | 2x^-7=11 | | x+21/2=10. | | X+x×2-3=24 | | 4x-(2x+8)=2x-7 | | .003+3.7x=x^2 | | 5x-(8-6x)=x=8 |